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Outline

• Goals

• Review of Past Work

• Argon Collisional-Radiative Complexity Reduction Validation

• Non-Maxwellian CR

• Phase-accurate Multiscale Particle Push
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Goals

• Utilize hybridization techniques to produce accurate and efficient plasma 
simulations that spans many orders of magnitude in both space and time.

• Capture complex physics: excitation/ionization, transport, radiation, etc.
• Consistent collision operator across different levels of fidelity.

FRC

Current Focus:
• Generalization of collisional-

radiative kinetics with level 
grouping

• General Hybridization techniques
• Focus on each solver before 

hybridization
• Special attention to low density 

low energy conditions

Laser Plasma Interaction
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RQRS M&S Group
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– Dr. Michelle Scharfe (Flight Support)
– Dr. Eder Sousa (FRC)
– Jonathan Tran (Grad Student, Implicit PIC)

• Summer Students

– Astrid Raisanen 
• PhD UofM; Vlasov HET

– Daniel Crews 
• M.S. Washington; Collisionless 

Shock for V&V
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– Dr. Hai Le (LPI; now at Livermore)

– Dr. Artan Qerushi (FRC now at 
Lockheed)
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Solid includes inelastic collisional effects
Dashed does not. 
Drift temperature (Tw) is 0.01

Summary of Past Work

• Detailed CR model for multiple ionization stages
• Validation against experimental data
• Nonequilibrium radiation transport: coupling with a 

collisional-radiative model
• Inelastic collisions in a MF plasma: enhanced 

thermochemical kinetics.

Maxwellian Inelastic Collisions

• A time-parallel/multiscale method with energy 
preservation

Multiscale Hybridization

• Conservative even for large mass ratios
• Conservation are independent of collisional 

frequencies

Analytical BGK
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Collisional Radiative (CR) Overview

Updates

• Expanded complexity reduction to include 
multiple ionization levels

• Adaptive integration technique -> fixes rate 
calculation for higher electron temperature

• Investigate grouping sensitivity
• Linked with LANL database for Argon cross 

sections and atomic level information
• Algorithms not hard coded for Argon. 

Levels of Complexity

• Full rates (LANL)
• Cutoff nearly ionized levels
• Grouping Strategies

• Uniform 
• Boltzmann
• QSS (Boltzmann and Planck equilibrium)

• Group Selection
• Electron configuration (no splitting 

information)
• Highly excited states
• Analysis of full run
• Numerical optimization
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CR Governing Equations
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CR Governing Equations cont.

𝑑𝑑𝑛𝑛𝑛𝑛+𝑘𝑘

𝑑𝑑𝑑𝑑
=

𝛼𝛼 𝑚𝑚 𝑛𝑛
𝑒𝑒 = �

𝐸𝐸𝑛𝑛𝑚𝑚

∞
𝜎𝜎𝑛𝑛𝑛𝑛𝑒𝑒 𝜀𝜀 𝑣𝑣𝑒𝑒𝑓𝑓 𝑣𝑣𝑒𝑒 𝑑𝑑𝑣𝑣𝑒𝑒

𝛽𝛽 𝑛𝑛 𝑚𝑚
𝑒𝑒 =

𝑛𝑛2

𝑚𝑚2 𝑒𝑒
+𝑥𝑥𝑛𝑛𝑛𝑛𝛼𝛼 𝑚𝑚 𝑛𝑛 𝐴𝐴 𝑛𝑛 𝑚𝑚 =

8𝜋𝜋2𝑒𝑒2

𝑚𝑚𝑒𝑒𝑐𝑐3
𝑔𝑔𝑛𝑛
𝑔𝑔𝑚𝑚

𝑓𝑓𝑛𝑛𝑛𝑛

• Current Assumptions
• Electron dominated collisions
• δ function for ion distribution
• Maxwellian electrons

• Current Model Includes
• Multiple ionization levels
• Excitation/de-excitation
• Ionization/recombination
• Multi-photon ionization and 

inverse Bermsstrahlung
• Radiation losses via, Bound-

Bound and Bound-Free 

*previous included
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CR Grouping Techniques

Uniform
• Solely conserves number 

density
• Weights each level 

according to level 
degeneracy within group

Conserved Variable: 

�𝑁𝑁𝑛𝑛 = �
𝑖𝑖∈𝑛𝑛

𝑁𝑁𝑖𝑖

Effective rate:
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𝑔𝑔𝑛𝑛

�
𝑗𝑗∈m

𝛼𝛼 𝑗𝑗 𝑖𝑖

Boltzmann
• Conserves number density
• Preserves energy in groups 

through group 
temperature description

Conserved Variable:

𝑁𝑁𝑛𝑛0&𝑁𝑁𝑛𝑛′ =
𝑁𝑁𝑛𝑛0
𝑔𝑔𝑛𝑛0

�
𝑖𝑖∈𝑛𝑛

𝑔𝑔𝑖𝑖𝑒𝑒𝑖𝑖
−Δ𝐸𝐸𝑖𝑖/𝑇𝑇𝑛𝑛

Effective rate:
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𝑗𝑗∈m′

𝛼𝛼 𝑗𝑗 𝑖𝑖

𝑑𝑑𝑁𝑁𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑒𝑒 ��
𝑚𝑚>𝑛𝑛

𝛼𝛼 𝑚𝑚 𝑛𝑛 𝑁𝑁𝑛𝑛 �+ �
𝑚𝑚<𝑛𝑛

𝛽𝛽 𝑚𝑚 𝑛𝑛 𝑁𝑁𝑛𝑛 + ⋯

𝑑𝑑�𝑁𝑁𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑒𝑒 �𝑁𝑁𝑛𝑛 ��
𝑚𝑚>𝑛𝑛

�𝛼𝛼 𝑚𝑚 𝑛𝑛 + ��
𝑚𝑚<𝑛𝑛

�𝛽𝛽 𝑚𝑚 𝑛𝑛 + ⋯
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Complexity Reduction for Argon

Full Lines (LANL)
• Based on quantum calculations with 

corrections for low temperature

NIST Cutoff
• Starts with LANL and assumes higher 

excited states are ionized
• Cutoff experimentally determined
• 2-3x reduction

Electron Configuration
• Groups based on electron configuration
• Uses uniform grouping
• 10-15x reduction over NIST

Grouping
• Boltzmann or Uniform grouping
• Saves 20-30% over Electron Splitting
• Case by case basis
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Argon Level Grouping Isothermal Test
Setup

Simulation Setup

• Pressure: 4.22 Torr (5.55x10-3 atm)
• Ion Temperature: 0.035 eV 
• Atomic Density: 1020 1/m3

• Ionization fraction: 10-13

• Electron Temperature: 10 & 100 eV
• t = [0,106] seconds

Groupings

• NIST cutoff with electron grouping
• NIST cutoff with electron grouping 

and Boltzmann grouping
• NIST cutoff with electron grouping 

and Uniform grouping



12Distribution A – Approved for public release; distribution is unlimited; PA: #16531 12

Argon Level Grouping Isothermal Test
Electron Temperature 10 eV

3
Groups

Isolated States/ Not Grouped Argon +1
12 electron configurations
9 Isolates states
1 group with 3 states

Uniform group propagates 
errors to isolated states
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Argon Level Grouping Isothermal Test
Electron Temperature 100 eV

Isolated States3 GroupsIsolated States Argon +3
17 electron configurations
14 Isolates states
1 group with 3 states

Uniform groups propagates 
errors to isolated states
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Argon Level Grouping Isothermal Test
Error

ODE Solver tolerance 
Relative error 1-4

Absolute error 1
~1200 Radau5 time steps
dt increases exponentially

Solution improves if 
either tolerance is 
decreased but at the 
expense of computational 
time. E.g. relative error 
10-6 -> computational 
time triples
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Non-Maxwellian Electrons CR - Ions
(Preliminary)

• Current Assumptions
– Electron dominated 

collisions
– Single ionization level
– Isotropic EEDF
– δ function for ion 

distribution
• Current Model Includes

– Elastic electron collisions
– Excitation/de-excitation
– Ionization/recombination
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Non-Maxwellian Electrons CR - Electrons 
(Preliminary)

��
𝑑𝑑𝑓𝑓𝑒𝑒 𝜀𝜀, 𝑡𝑡

𝑑𝑑𝑑𝑑
elastic

= 𝜈𝜈𝑒𝑒𝑒𝑒 𝐹𝐹𝑒𝑒 − 𝑓𝑓𝑒𝑒 + 𝜈𝜈𝑒𝑒𝑒𝑒(𝐹𝐹𝑒𝑒𝑒𝑒 − 𝑓𝑓𝑒𝑒)

• Current Assumptions
– Electron dominated 

collisions
– Single ionization level
– Isotropic EEDF
– δ function for ion 

distribution
• Current Model Includes

– Elastic electron collisions
– Excitation/de-excitation
– Ionization/recombination
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Non-Maxwellian CR Numerical Challenges

• Long complex CR formulas
• Stiff equations
• Range of scales
• Boundary conditions
• Multi-dimensional integrations

𝜀𝜀0𝜀𝜀0 − 𝜀𝜀1 = 𝜀𝜀2 + 𝐼𝐼𝑛𝑛 = Υ

𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕2𝑁𝑁𝑛𝑛
𝜕𝜕𝜀𝜀0𝜕𝜕Υ

• Hydrogen recombination example:
• 𝑒𝑒0 + 𝐻𝐻𝑛𝑛 ← 𝑒𝑒1 + 𝑒𝑒2 + 𝐻𝐻+
• Energy equation in terms of the electron’s 

kinetic energies, 𝜀𝜀, and ionization energy 𝐼𝐼𝑛𝑛. 
• 𝜀𝜀0 = 𝜀𝜀1 + 𝜀𝜀2 + 𝐼𝐼𝑛𝑛
• Evaluating the effect of recombination on a 

single species of hydrogen requires the 
evaluation of a 2D integral.
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Hybridization Techniques

• Solve ODE/PDE with a coarse “C” 
solver and fine “F” solver

• Coarse propagates less information 
and is more computationally 
efficient

• Fine propagates more information 
and is more accurate

• User defined coarse error function 
ℎ 𝑢𝑢 , 0 ≤ ℎ ≤ 1

• when h=0 coarse is accurate
• Q compression operator
• R reconstruction operator
• h, ε, Q, & R, are problem dependent 

Simpler hybrid (H) method 

More complex time parallel (TP) method 
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Hybridization Charged Particle in Magnetic Mirror

Gyrokinetic + Phase and 
Time Parallel method are 
the most efficient

Simple blending could be 
more accurate as the 
problem approaches 
stead state

𝐵𝐵𝑥𝑥 = −
2𝐶𝐶𝐶𝐶𝑧𝑧3

𝑎𝑎4

By = −
2Cyz3

a4

Bz = C 1 −
z4

a4

*Submitted to Journal
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Summary

• Collisional Radiative
– Boltzmann grouping improves group representation over applied uniform distribution
– Minimization of error, which is expected to accumulate quickly during highly-transient 

durations, and acceleration of method makes Boltzmann reduction a strong case for future 
coupled simulations

– Adaptive integration allowed for faster simulations at larger electron temperatures
– Sensitive to selected groups
– Grouping reduces stiffness
– Robust solver capable of handling, Te from 1 – 1,000 eV and 1016-1024 particles
– Initial work on non-Maxwellian CR has begun and early numerical issues have been addressed

• Hybridization
– Shows that hybridization technique can be more computational efficient than the schemes 

that comprise it
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Future Work

• Collisional Radiative Simulations
– Further comparisons between reduced mechanisms with QSS
– Line identification and width assignments in conjunction with experimental spectra
– Apply Boltzmann grouping to new CR Argon rates and test with 1D MHD Argon 

shock by Kapper, et.al. Future plans to extend to 2 and 3D MF
– Rerun previous LPI test case with level grouping; laser source term, heavy-electron 

elastic collisions, and multi-electron energy correction and heavy energy equation 
(Te, Th)

• Group selection through numerical analysis, optimization
• Hybridize Maxwellian CR with QSS
• Non-Maxwellian finite rate EEDF implementation 
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Questions?
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